UPCOMING EVENTS

- June 18 – 23 – Woodford County Fair, Fair Grounds, Versailles, KY
- July 17 – 2018 UK Field School hosting a Spray Clinic, UK Research Center, Princeton, KY
- July 23 – 53rd Annual Woodford County Farm Tour, more information coming soon
- July 24 – UK Corn, Soybean, Tobacco Field Day, UK Research & Education Center, Princeton, KY

ACROSS THE AGENT’S DESK

Too often when we are farming, we find ourselves under stress. Stress from the markets, Mother Nature, employees, suppliers, or even family can play a large impact on our decisions on the farm. We often face these decisions (or seem to) all at once. One thing that we need to remember is to differentiate between what we can and cannot control. We cannot control the weather, market prices, inputs, or labor supply, BUT we can decide what we are going to plant, how we should market it to receive the best price, or where we purchase our inputs. Surround yourself with others who can assist with farm decisions that are not connected to the farm. Allowing those individuals the opportunity to provide advice on your farm may help save you from some unwarranted stress today or tomorrow. Here’s to hoping we have all had a safe and prosperous spring so far!

Timely Tips
Dr. Roy Burris, Beef Extension Professor, University of Kentucky

Spring-Calving Cow Herd

- Continue supplying a high magnesium mineral until daytime temperatures are consistently above 60º. This has been a cool spring so far.
- Improve or maintain body condition (BCS 5) of cows before breeding season starts, if necessary.
- Bulls should have a breeding soundness evaluation (BSE) well before the breeding season. They should also receive their annual booster vaccinations and be dewormed.
- Schedule spring of “turn-out” working in late April or early May-at the end of calving season and before the start of breeding season. Consult with your veterinarian about vaccines and health products for your herd.

“Turn-out” working for the cow herd may include:

- Prebreeding vaccinations
- Deworming
- Replacing lost identification tags
- Sort cows into breeding groups, if using more than one bull
- Insecticide ear tags (best to wait until fly population builds up)

“Turn-out” working of calves may include:

- Vaccinate for IBR-PI3, Clostridial diseases and Pinkeye
- Dehorn, if needed (can be done with electric dehorner and fly repellent during fly season)
- Castrate and implant male feeder calves (if not done at birth)
- Deworm
- Insecticide ear tags

- Consider breeding yearling replacement heifers one heat cycle (about 21 days) earlier than cows for “Head-start” calving. Mate to known calving-ease bulls.
- Record identification of all cows and bulls in each breeding group.
- Begin breeding cows no later than mid-May, especially if they are on high endophyte fescue. Cows should be in good condition so that conception occurs prior to periods of extreme heat.
- Choose best pastures for grazing during the breeding season. Select those with the best stand of clover and the lowest level of the fescue endophyte, if known. Keep these pastures vegetative by grazing or clipping. High quality pastures are important for a successful breeding season.
BEEF CONTINUED...

- If using artificial insemination:
 ✓ Use an experienced inseminator.
 ✓ Make positive identification of cows and semen used. This will permit accurate records on date bred, return to heat, calving date and sire.
 ✓ Good handling facilities and gentle working of the cows are essential.
 ✓ Choose AI sires that will meet your goals and resist the temptation to get your cows bigger.
 ✓ Observe breeding pastures often to see if bulls are working. Records cows’ heat dates and then check 18-21 days later, for return to heat.

Fall-Calving Herd
- Pregnancy check the cow herd. Remove open cows at weaning time.
- Plan marketing program for calves. Consider various options, such as maintaining ownership and backgrounding in a grazing program, or precondition and sell in a CPH-45 feeder calf sale.
- Initiate fly control for cows when fly population builds up.

- Calves may be weaned anytime now but you can take advantage of the spring grass by leaving them on the cow a while or weaning and grazing.

Stockers
- Keep calves on good pasture and rotate pastures rapidly during periods of lush growth. Manage to keep pastures vegetative for best performance.
- Provide mineral mix with an ionophore.
- Implant as needed.
- Control internal and external parasites.

General
- Harvest hay. Work around the weather and cut early before plants become too mature. Harvesting forage early is the key to nutritional quality. Replenish your hay supply!
- Rotate pastures as needed to keep them vegetative.
- Clip pastures to prevent seedhead formation on fescue and to control weeds.
- Seed warm season grasses this month.

Kentucky Beef Cattle Market Update
Dr. Kenny Burdine, Livestock Marketing Specialist, University of Kentucky

After focusing on cattle inventory in February, summer stocker programs in March, and fall calving cow-calf profitability in April, I want to focus more specifically on the market in May. Overall, the first four months of 2018 have not been kind to cattle producers. Fed cattle prices fell by more than $10 per cwt from late February to early April. While slaughter has been up in 2018 (especially for cows), uncertainly about trade was also at play. Cash fed cattle prices had actually improved some by early May.

It’s really the expectation for late fall / early winter fed cattle prices that is driving our current feeder market. As I write this (May 9, 2018), December CME© Live Cattle futures had decreased by $7 to $8 per cwt from where they were in late winter. This translates back directly into feeder cattle values and I think we have seen this in local markets.

The April price may be a little deceiving as prices improved through the month, but it definitely makes the point. Lower expectations for fed cattle get bid directly into feeder cattle prices. Slightly higher grain prices have also not helped the feeder cattle picture, but I view this impact as secondary.

While calf prices have not been hit nearly as hard as heavy feeders, I do think they felt some impacts as well. Calf prices usually improve from February to March as we move closer to grass. The dotted line shows this over the time period 2010 to 2016. Note the calf market was basically flat from February to March in 2018. Fall CME© feeder cattle prices fell in response to fed cattle markets and this lowered the expected value of spring calves when they came off grass in the fall.

I think this worked to offset the typical spring price improvement we see as cost of gain decreases with the start of spring grazing. This was probably especially true in 2018 as forage growth has generally been delayed compared to typical years.

While trade discussion has deservedly gotten a lot of attention this spring, I maintain that supplies are our largest problem. The cow herd has grown, so cattle-on-feed numbers have grown, and that has led to increased beef production. Unfortunately, the pace of this growth is likely to be even larger this spring and early summer than was seen in the first quarter. Plus, we are going to see more pork and poultry production as well.

The good news for us in the feeder cattle markets is that the seasonal summer fed cattle lows have already been priced into feeders. Our current market is being driven by fall fed cattle market expectations and the year-over-year increases in beef production will have moderated some by then (they will still be higher). So, while it’s difficult to forecast increasing calf prices after initial placement of calves on spring grass, I do think we have a good chance of seeing our market for heavy feeder cattle improve between now and the end of summer.

KY Auction Prices ($ per cwt) 550# Medium & Large frame #1-2 Steers. Source: USDA-AMS, Livestock Marketing Information Center, Author Calculations

JUNE 2018
Erratic Corn in an Erratic Spring
Chad Lee, Extension Agronomist, University of Kentucky

Corn across Kentucky has had a difficult week. Corn looks erratic in many fields, especially in the eastern half of the Commonwealth. Much of the crop is finally large enough to reveal planting errors, restricted roots and dry spots in fields. All of those problems display as nutrient deficiencies. Storm system Alberto dropped over 50,000 gallons of water per acre in many fields in a short period. Those 200 tons of water combined with high winds to flatten corn in many fields. In this article, we will try to tackle each of these subjects.

Sidewall Compaction
Roots restricted to the seed furrow have limited access to nutrients and the plants that are at about V5 growth stage will display nutrient deficiencies. Timely rain events will soften the sidewall and help roots escape the compacted layer. Dig these plants and look for evidence of roots escaping the seed furrow. If roots are escaping, the corn has a chance to make a good yield. If the roots are trapped, yields will be poor.

Shallow Planting
Corn seeds planted less than one-inch deep can result in nutrient deficiencies, especially if soils are dry. Just like with sidewall compaction, corn at about V4 or V5 growth stage are big enough to display these nutrient deficiencies. In these cases, a little rain will encourage root growth, allowing the roots to find the nutrients and yield extremely well. These plants are at higher risk to lodging later in the season, but high yields should be expected if the season is favorable.

Dry Soils
Some areas of Kentucky were actually short on moisture before Alberto hit. The previous week was above average temperatures and below average rainfall (USDA NASS Crop Progress). Since many soils undulate and have variable rooting depths, the soils across the field can be at different levels of moisture. The dry areas will have plants displaying nutrient deficiencies even when the soils have adequate or high fertility levels. The variability of soil moistures across a field can lead to the erratic appearance of corn in a field. Alberto removed the dry areas but brought other problems.

Dry areas can lead to temporary nutrient deficiency symptoms and give an erratic appearance to the field. Water will help move nutrients into the root zone and help with plant growth. Photo courtesy of Brett Reese, Southern States.

Flattened Corn
Alberto flattened corn in fields across Kentucky. Most of the corn was between about V4 and V7 growth stages. If the stems are bent but not broken the corn plants will grow upright and good yields are still possible. For these fields, the best thing to do is to stay away from them for a few days. Looking at them now only causes heartburn.

Final Thoughts
While much of the young corn looks erratic across Kentucky, much of the crop still has good yield potential. The erratic weather this spring and planting problems in certain fields combined to cause these erratic symptoms. Many farmers are motivated to apply foliar products to the field. Many of these products could improve the appearance of the field, but they may not improve the yield. For anyone trying a foliar product, please keep a couple passes out of the application to serve as a check. These checks in the middle of the field can help determine if any of those products improved yield.

If we receive adequate and timely moisture the remainder of the growing season, yields should be excellent. However, if the weather this spring were a predictor of the weather coming this summer, we could be in for a bumpy ride. If you have questions about your fields, please contact your Woodford County Extension Office.
May WASDE Suggests Better Prices For 2018-19

Todd Davis, Assistant Extension Professor, Grain Marketing, UK Research & Education Center, Princeton

The May WASDE provides the initial supply and use projections for new-crop corn, soybeans, and wheat. At this point, USDA relies on farmer surveys and trend yields to project production. The initial forecast does tell a story of how the grains and oilseed markets may have improved prices from last year.

A combination of reduced area and trend yields could reduce the size of the U.S. corn crop by 564 million bushels from last year. The corn market could also benefit from reduced carry-in from last year, which would also reduce the corn supply in 2018-19. USDA is projecting corn use at 14.6 billion bushels, which is slightly less than the use in 2017-18. The bottom-line for corn is that ending stocks could be trimmed by 500 million bushels, and that has the potential to support higher corn prices. USDA is projecting a U.S. farm price of $3.80 per bushel, which would be a $0.40/bushel increase from last year if realized (Table 1).

USDA provides a slightly different story for soybeans. The 2018 soybean crop is projected to be 112 million bushels smaller than last year due to the assumption of reduced harvested area and trend yields. The smaller soybean crop would reduce the effect of a large carry-in of 530 million bushels.

A key assumption in soybeans is that exports will increase by 225 million bushels from 2017-18. The assumption of strong use is a driving factor in the projected reduction in stocks to 415 million bushels. If realized, the U.S. farm price for soybeans could be $10 per bushel.

USDA is also projecting higher wheat prices from 2017-18. The reduced carry-in from 2017 coupled with similar production in 2018 will continue to whittle away at wheat stocks. The key assumptions in wheat use are in feed use, which may be too high. USDA was cautious in projected exports with only a 15 million bushel increase from the current marketing year. If realized, wheat has the potential to draw stocks below a 50% stocks-to-use. The U.S. wheat farm price is projected at $5 per bushel (Table 1).

These initial projections will be fine-tuned throughout the summer. As always, weather impacts on yield potential could provide pricing opportunities for the three crops and managers should be prepared to price crops on market rallies. The current story from USDA shows how a year with more normal yields could allow stocks to decline and provide opportunities for higher prices.

The Cost of a Windrow

When harvesting hay or haylage we tend to think in terms of how long it takes to get the hay off the field. However, the first concern for quality hay/haylage should be how long it takes to lose the first 15-20% moisture. Forages have 75-80% moisture when cut; they will continue to respire sugars (break down and give off heat and carbon dioxide) at a high rate until the plant is dried to 60% moisture. If we want to save the energy of the starch and sugars for our cattle, we need to dry off the first 15-20% moisture as quickly as possible.

Most of the respiration takes place in the leaves. We should remember that conditioning is for drying the stems but has little impact on drying the leaves. A wide swath has the biggest effect on rate of leaf drying. Leaves dry faster in a wide swath because:

* More sunlight falling on the field is intercepted for drying. (A windrow intercepts only 25-30% of sunlight falling on the field while a wide swath intercepts 70-100% of sunlight.)

Light keeps the leaf stomates open longer, so moisture can leave through leaf openings. Since most of the forage in a windrow is in the dark, the leaf stomates close to seal the leaf surface.

Data indicate that starch and sugar loss can range from 2-8% of dry matter. If we assume a median starch/sugar loss of 4% of dry matter due to hay in a windrow compared to a wide swath, then the dry matter economic loss is $6.40/ton, according to current hay prices in the Midwest for large square bales. However, the respiratory losses of starch and sugar also increase the fiber content of the forage. If the forage was near 40% NDF (prime hay/haylage) when cut, then the 4% starch loss will increase fiber 3.4 units and lower the quality to Grade 1 hay (125-150 RFQ). Grade 1 hay is currently selling for $38/ton less than Prime hay. The value to dairy producers is about twice the price differential between hay grades.
FORAGES CONTINUED...

Many farmers have switched to making wide swaths when mowing. A wide swath is the single most important factor affecting forage drying rate; it is more important than conditioning. Farmers who continue to put hay into windrows are increasing drying time and risk of rain damage. They are also currently losing about $44.40/ton due to yield and quality losses from increased respiration. Considering this dollar loss, most farmers could figure out a way to make wider swaths with their existing equipment; they should also look at wide swath mowers when replacing mowing equipment.

Spray Timing for Roundup Ready Alfalfa

Dan Undersander, NAFA News Release May 15, 2018

During the last month I have had several calls about the proper timing to spray Roundup Ready alfalfa varieties with Roundup. This is reported in the new “Weed Control in Alfalfa” publication highlighted in last months issue. It states “the initial glyphosate application is necessary at the 3 to 5 trifoliate leaf stage to remove the small percentage of glyphosate-susceptible alfalfa plants that can be present in a new seeding (and to kill any weeds present in the stand). Spraying at the 3 to 5 leaf stage insures that all alfalfa seedings have emerged. But if weeds are present at earlier stages of alfalfa growth Roundup can be sprayed on Roundup Ready alfalfa from emergence up through any stage of plant growth.

Are Soybeans an Option for Summer Annual Forage?

Soybeans are an option as an emergency hay or silage crop, and have the added benefits of being a legume (thus needing no nitrogen fertilizer). Additionally, they do produce prussic acid (cyanide) or accumulate nitrates like other summer annual forages. Soybeans can be very challenging to cure as hay because of their thick stems – using a conditioning mower to crush these stems helps curing. When harvesting soybeans for forage it is important to harvest when plants are still in a vegetative or leafy growth stage to maximize forage digestibility and protein. Soybeans are also a great rotation crop to precede a fall seeding of an improved cool season grass like orchardgrass or novel endophyte tall fescue. Some producers have added a low rate of sudangrass (5-10 lbs/A) to soybean hay and silage crops, but higher rates often compete with the soybeans. ~ Dr. Jimmy Henning, excerpted from the May 17 issue of Farmer’s Pride. This is a free online publication available at https://thefarmerspride.com or call 270-384-9454 to request a paper copy.

PEST

Dr. Lee Townsend, UK Extension Entomologist

Ideal Spring for “Hopperburn” on Alfalfa

Potato leafhopper (PLH) is a key pest of spring-seeded alfalfa. Small size makes PLH an easily overlooked, but costly, pest. Top pest management priority should go to spring-seeded stands. The recommended 70 to 90 day growth period before first harvest allows time for damaging numbers of PLH to develop. However, a long, cool spring and a compressed planting schedule can mean that the first cutting of alfalfa will be late, giving leafhoppers extra time to feed and increase populations in established fields.

PLH is a migratory insect that moves north on warm south winds from the Gulf States each spring. It shows up in established alfalfa fields during May, but the date can vary from the first to the last of the month in any given year. Significant numbers of leafhoppers may find their way into spring-seeded fields in spring with a rapid increase during June and a peak in early July. The leafhopper usually disappears from Kentucky alfalfa fields in late July.

In a recent study, researchers demonstrated the impact of climate change on this specific migratory pest. PLH arrives in northern states an average of 10 days earlier than it did in the 1950s and it is causing more damage in years with warmer average temperatures. With a host range of more than 200 plants from alfalfa to hops, the importance of this insect is increasing across the country.

Potato Leafhopper Damage

PLH can affect alfalfa in several ways. Insertion of their piercing sucking mouthparts to feed on sap physically damages vascular tissues of stems and leaves, and it blocks the phloem. Hopperburn, the characteristic symptom, results from the accumulation of photosynthates in leaves. It begins as a V-shaped wedge of yellow extending from about the middle of the leaf to the tip.

PLH impact on plants is significant and can include stunted growth, premature leaf-drop, reduced root carbohydrate reserves, and drastic reductions in protein content of hay. In sufficient numbers, PLH can reduce yields up to 25%, as well as lower crude protein, vitamin A, carotene, calcium, phosphorus, and digestible dry matter content.
Scouting Potato Leafhopper

Reducing losses means detecting potentially damaging numbers of PLH before symptoms appear. Adults are small and flighty; nymphs are even smaller. Detection and assessment of populations require a 15-inch diameter sweep net. Taking five sets of 20 sweeps from randomly selected areas in a field, coupled with the average plant stem height, is the way to detect and assess the pest before the crop is damaged.

Managing Potato Leafhopper

Insecticides

A single, well-timed application of any one of several insecticides will provide excellent leafhopper control if numbers exceed treatment guidelines. Refer to the Extension publication, *Potato Leafhoppers* (ENTFACT-115), for more information.

Cultural Practices

A 35-day harvest schedule generally keeps leafhoppers from building to large numbers. Cutting drives the winged adults out of the field. The wingless nymphs are unable to leave and most starve or die from some other cause before regrowth starts.

Horticulture

Spider Mites Love Hot Weather

Source: Ric Bessin, Extension Entomologist

With the summer months just beginning (although this spring has felt like summer), producers need to keep in mind that hot and dry conditions can lead to some specific pest problems. Two-spotted spider mite is a common pest of many vegetable crops and field crops during prolonged hot and dry periods. This pest reproduces quickly during periods of hot, dry weather. Mites can injure tomatoes, beans, muskmelons, eggplant, watermelons, and sweet corn. Infestations usually first occur along field margins, typically near rank weed growth or dusty roads. Some pesticides, such as pyrethroids, used to control insect pests can reduce natural enemies that help to keep mites below economic levels.

Symptoms and Damage

Generally, mites feed on the undersides of leaves. They use their sucking mouthparts to remove sap from plants, giving upper leaf surfaces a speckled or mottled appearance. Leaves of mite-infested plants may turn yellow and dry up; plants may lose vigor and die when infestations are severe. Undersides of affected leaves appear tan or yellow and have a crusty texture. In hot dry weather, mites can cause plants to drop leaves in a few weeks. Fruit from severely infected plants are often unmarketable because defoliated plants tend to yield small, poor quality fruit.

Heavy infestations of two-spotted spider mite produce fine webbing, which may cover portions or entire plants. Mites can be identified by shaking leaves onto a sheet of white paper or by observing leaf areas with a hand lens.

Under optimum conditions of high temperature and low humidity, the mite life cycle may be completed in 7 days; females can lay 200 eggs.

Management

Avoid Harming Natural Enemies

Natural enemies of mites are present in and around fields and usually can keep mite populations low. Many insecticides used for control of insect pests severely reduce numbers of beneficial insects that keep mite populations in check. Therefore, apply insecticides only as-needed, rather than at regularly scheduled intervals. When possible, select pesticides which will have less impact on beneficial insects.

Manage Weeds

Management of weeds adjacent to and in fields should be done routinely and throughout the season. Grass should be mowed regularly. Spraying or mowing of weeds after growth has become rank may increase movement of mites to cultivated plants.

Micides

Micides are available for some vegetable crops but should be used only where justified. As with aphids, mark infestations with flags, and check them again every 3 or 4 days. If an infestation is not spreading, treatment will not be required. Because mite populations often are localized, spot spraying may be effective. If you spray only a portion of a field, treat a buffer zone of 100 to 200 feet beyond mite infested areas.

Mites can easily be moved to infested plants on clothing, so always examine infested areas last during inspections. Resistance to pesticides has increased difficulty of controlling these pests. Because mites primarily occur on undersides of leaves, applications of contact miticides need to be directed at both lower and upper leaf surfaces. Mite eggs are resistant to some miticides, so repeated applications are often necessary to control infestations. Two applications spaced a week apart may be necessary with some miticides. See 2018-2019 *Vegetable Production Guide for Commercial Growers* (ID-36), for a complete list of available miticides for vegetable crops and their restrictions.
Beef and Vegetable Soup

*Makes: 8 Servings
Time: 1 hour*

One large pot and 1 hour are all that you need for this hearty soup. Serve it for lunch or dinner.

INGREDIENTS
- 1 pound ground beef
- 1 1/2 cans low-sodium whole kernel corn (about 23 ounces)
- 1 can low-sodium carrots (about 15 ounces)
- 1 can low-sodium potatoes (sliced, about 15 ounces)
- 1 can low-sodium diced tomatoes (about 15 ounces)
- 1 small onion (diced)
- 1/2 cup macaroni, dry
- 1 teaspoon garlic powder
- 1 teaspoon onion powder

DIRECTIONS
1. In a large pan, brown ground beef over medium heat for 8-10 minutes. Drain off fat.
2. Add corn, carrots, potatoes, tomatoes, and onions to pot.
3. Cook for 25 minutes over medium heat. Stir every 10 minutes.
4. Add macaroni, garlic powder, and onion powder to pot.
5. Cook for 20 minutes over medium heat. Stir every 10 minutes.

NOTES
Tip for cooking ground beef: The recommended safe minimum internal temperature for ground beef is 160 degrees F, as measured with a food thermometer.

Mushroom Steak Fajitas

*Makes: 4 Servings
Time: 45 minutes*

INGREDIENTS
- 12 ounces sirloin or other boneless steak (about 3/4-inch thick)
- 3 cups sliced cremini mushrooms
- 1 tablespoon no-salt fiesta lime seasoning (divided)
- 1 tablespoon olive oil
- 1 cup green bell pepper slices
- 1 medium red bell pepper (sliced into strips)
- 1 medium yellow bell pepper (sliced into strips)
- 8 whole-wheat tortillas (6-inch)
- 1 medium tomato (diced)
- 2 cups shredded iceberg lettuce
- 4 tablespoons non-fat sour cream

DIRECTIONS
1. Slice beef across the grain into 1/4-inch strips. Place in a medium bowl with 1/2 tablespoon fiesta lime seasoning; toss to coat.
2. Place mushrooms, peppers, and onion and remaining fiesta lime seasoning in a large bowl; toss to coat.
3. Heat oil in large, non-stick skillet. Add beef strips; cook about 3-4 minutes. Remove from skillet.
4. Place coated vegetables in skillet and sauté until vegetables are slightly tender, about 5-8 minutes.
5. Add beef back to skillet and sauté mixture 1-2 more minutes.
6. Assemble fajitas by dividing beef-vegetable mixture evenly on each tortilla, top with remaining ingredients and roll up.

NUTRITION INFORMATION
(for 1/4 of the recipe)
- Total Calories 430, Total Fat 16 g, Protein 27 g, Carbohydrates 46 g,
- Dietary Fiber 7 g, Saturated Fat 5 g Sodium 590 mg
Free Soil Testing

Free soil test vouchers are available at the Woodford County Conservation Office to be redeemed when soil samples are submitted through the Woodford County Extension Service. Up to 20 free soil tests are available per farm or homeowner. This program runs through June 30, 2018, or until the funds are depleted.

The Woodford County Conservation District has the following equipment for rent. Please contact the location of equipment for availability.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) No-till drills</td>
<td>Southern States</td>
</tr>
<tr>
<td>(2) No-till drills</td>
<td>Woodford Feed</td>
</tr>
<tr>
<td>(2) Tubeline bale wrappers</td>
<td>Woodford Feed</td>
</tr>
<tr>
<td>Chain Harrow</td>
<td>Woodford Feed</td>
</tr>
</tbody>
</table>

WC Extension Service Equipment

- Grain Moisture Meter
- Liquid pH Meter
- Sprayer Calibrator
- Grain Test Weight Meter
- Hay Probes
- Soil Probes
- Electrical Conductivity (EC) Meter
- Hay Moisture Tester
- Walk-behind BCS tractor - Attachments include: 3’ plastic layer with drip tape applicator and Single rotary plow
- Raised Bed Plastic Mulch Layer - Model 2400 lays 4ft. wide plastic and adjustable 3” to 5” bed height (requires 30-hp and 4-wheel drive)

Please contact the Extension Office, 873-4601, for availability

Visit our website
http://ces.ca.uky.edu/woodford
Follow us on Facebook
www.facebook.com/woodfordcountyCES
Join Our Email Distribution List!
You may subscribe on our

Sincerely,

Thomas Harris II,
County Extension Service
Woodford County

Happy Gardening!

Faye Kuosman,
County Extension Agent for Horticulture
faye.tewksbury@uky.edu

Sincerely,

Adam Probst, County Extension Agent
for Agriculture and Natural Resources
adam.probst@uky.edu